Unit 01: Getting an Idea of NLP and its Applications |
|
Module 01: Introduction to NLP |
|
00:03:00 |
|
Module 02: By the End of This Section |
|
00:01:00 |
|
Module 03: Installation |
|
00:04:00 |
|
Module 04: Tips |
|
00:01:00 |
|
Module 05: U – Tokenization |
|
00:01:00 |
|
Module 06: P – Tokenization |
|
00:02:00 |
|
Module 07: U – Stemming |
|
00:02:00 |
|
Module 08: P – Stemming |
|
00:05:00 |
|
Module 09: U – Lemmatization |
|
00:02:00 |
|
Module 10: P – Lemmatization |
|
00:03:00 |
|
Module 11: U – Chunks |
|
00:02:00 |
|
Module 12: P – Chunks |
|
00:05:00 |
|
Module 13: U – Bag of Words |
|
00:04:00 |
|
Module 14: P – Bag of Words |
|
00:04:00 |
|
Module 15: U – Category Predictor |
|
00:05:00 |
|
Module 16: P – Category Predictor |
|
00:06:00 |
|
Module 17: U – Gender Identifier |
|
00:01:00 |
|
Module 18: P – Gender Identifier |
|
00:08:00 |
|
Module 19: U – Sentiment Analyzer |
|
00:02:00 |
|
Module 20: P – Sentiment Analyzer |
|
00:07:00 |
|
Module 21: U – Topic Modeling |
|
00:03:00 |
|
Module 22: P – Topic Modeling |
|
00:06:00 |
|
Module 23: Summary |
|
00:01:00 |
Unit 02: Feature Engineering |
|
Module 01: Introduction |
|
00:02:00 |
|
Module 02: One Hot Encoding |
|
00:02:00 |
|
Module 03: Count Vectorizer |
|
00:04:00 |
|
Module 04: N-grams |
|
00:04:00 |
|
Module 05: Hash Vectorizing |
|
00:02:00 |
|
Module 06: Word Embedding |
|
00:11:00 |
|
Module 07: FastText |
|
00:04:00 |
Unit 03: Dealing with corpus and WordNet |
|
Module 01: Introduction |
|
00:01:00 |
|
Module 02: In-built corpora |
|
00:06:00 |
|
Module 03: External Corpora |
|
00:08:00 |
|
Module 04: Corpuses & Frequency Distribution |
|
00:07:00 |
|
Module 05: Frequency Distribution |
|
00:06:00 |
|
Module 06: WordNet |
|
00:06:00 |
|
Module 07: Wordnet with Hyponyms and Hypernyms |
|
00:07:00 |
|
Module 08: The Average according to WordNet |
|
00:07:00 |
Unit 04: Create your Vocabulary for any NLP Model |
|
Module 01: Introduction and Challenges |
|
00:08:00 |
|
Module 02: Building your Vocabulary Part-01 |
|
00:02:00 |
|
Module 03: Building your Vocabulary Part-02 |
|
00:03:00 |
|
Module 04: Building your Vocabulary Part-03 |
|
00:07:00 |
|
Module 05: Building your Vocabulary Part-04 |
|
00:12:00 |
|
Module 06: Building your Vocabulary Part-05 |
|
00:06:00 |
|
Module 07: Dot Product |
|
00:03:00 |
|
Module 08: Similarity using Dot Product |
|
00:03:00 |
|
Module 09: Reducing Dimensions of your Vocabulary using token improvement |
|
00:02:00 |
|
Module 10: Reducing Dimensions of your Vocabulary using n-grams |
|
00:10:00 |
|
Module 11: Reducing Dimensions of your Vocabulary using normalizing |
|
00:10:00 |
|
Module 12: Reducing Dimensions of your Vocabulary using case normalization |
|
00:05:00 |
|
Module 13: When to use stemming and lemmatization? |
|
00:04:00 |
|
Module 14: Sentiment Analysis Overview |
|
00:05:00 |
|
Module 15: Two approaches for sentiment analysis |
|
00:03:00 |
|
Module 16: Sentiment Analysis using rule-based |
|
00:05:00 |
|
Module 17: Sentiment Analysis using machine learning – 1 |
|
00:10:00 |
|
Module 18: Sentiment Analysis using machine learning – 2 |
|
00:04:00 |
|
Module 19: Summary |
|
00:01:00 |
Unit 05: Word2Vec in Detail and what is going on under the hood |
|
Module 01: Introduction |
|
00:04:00 |
|
Module 02: Bag of words in detail |
|
00:14:00 |
|
Module 03: Vectorizing |
|
00:08:00 |
|
Module 04: Vectorizing and Cosine Similarity |
|
00:10:00 |
|
Module 05: Topic modeling in Detail |
|
00:16:00 |
|
Module 06: Make your Vectors will more reflect the Meaning, or Topic, of the Document |
|
00:10:00 |
|
Module 07: Sklearn in a short way |
|
00:03:00 |
|
Module 08: Summary |
|
00:02:00 |
Unit 06: Find and Represent the Meaning or Topic of Natural Language Text |
|
Module 01: Keyword Search VS Semantic Search |
|
00:04:00 |
|
Module 02: Problems in TI-IDF leads to Semantic Search |
|
00:10:00 |
|
Module 03: Transform TF-IDF Vectors to Topic Vectors under the hood |
|
00:11:00 |
Assignment |
|
Assignment -U&P AI – Natural Language Processing (NLP) with Python |
|
00:00:00 |